“An attempt at visualizing the Fourth Dimension:
Take a point, stretch it into a line,

curl i1t into a circle, twist it into a sphere,

and punch through the sphere.”
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DEFINITION 5.15. Soit V un K-e.v. Un sous-ensemble ¢ C V est une famille generatrice si
Vect(9) = (9)kx =V,

ie. tout element v € V peut s’ecrire sous la forme d’une combinaison lineaire (finie) a cgefficients
dans K d’elements de 4 : pour tout v € V il existen > 1, x1, -+ ,2, € K, €1, -+ ,€, € tels que

(5.3.1) v = ;wiez = X Q’_’, **X\Q’Y\

S1 V' admet une famille generatrice finie, on dit que V est un K-module ou un K-ev de type

fini.

st IC-ev ie, aQM\ YN, .



DEFINITION. Soit V un K-e.v. Un sous-ensemble fini
G ={e,---,eqt CV
est une famille generatrice (du K-ev V') ssi les conditions equivalentes suivantes sont satisfaites:
(1) On a
Vect(G) = V.

(2) pour tous v € V, il existe x1,--- ,xq € K tels que
v=x1.€1F -+ T4.€4.
(3) L’application lineaire
d
CLy - K C vV
(xla"' ,Zl?d) = xi1.€1+ -+ ZT4.€4

est surjective.

Si V' admet une famille generatrice finie ou dit que V' est un K-ev de type fini ou est de dimension

finze.
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THEOREME 5.3. Tout K-espace vectoriel de dimension finie d = dimV' est isomorphe (comme
K-ev) a lespace vectoriel K¢ (avec la convention que {0x} = K°). En d’autres termes V est
isomorphe au K -module libre de rang d = dim(V'), K¢,
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THEOREME. Soit 9 C V une famille generatrice de V de cardinal d = dim V' alors l'application
CLg est injective et defini donc un isomorphisme

CLg: K%~ V.



COROLLAIRE 5.3 (Critere dimensionel d’isomorphisme). Soient V,W des K-ev de dimensions
finie dy et dyw alors V' et W sont isomorphes ssi ils ont meme dimension:

VW< dy = dy.
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DEFINITION 5.17. Un sous-ensemble fini # = {e1,--- ,er} C V d’un espace vectoriel est une
famille libre de V' si et seulement si ['une des trois conditions equivalentes suivante est satisfaite:

(1) L’application lineaire

CLs - Kf —> %
(1, - ,xf) = zx1.€0+ -+ 2Tf.€f
est injective.
(2) pour tous x1,--- ,xyp, 4, , 2} €K
r1.€1+ -+ zrep=x1.€04+ + T8y =31 —T) = =z5 —x; = 0.
(3) pour tous z1,--- ,xy € K
ri.e;1+ - t+rrep=0GC=r = =5 =0k.

Une famille .F qui n’est pas libre est dit liee.

THEOREME 5.4 (Majoration du cardinal d’une famille libre). Soit V' un espace vectoriel non-nul
de dimension d et F = {v1,--- ,v5} CV une famille finie et libre; alors f < d.
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Bases

DEFINITION 5.18. Soit V' un espace vectoriel de dimension finie. Une famille = {e1,--- ,eq}
est une base de V si l'une des conditions equivalentes suivantes est verifiee:

(1) A est generatrice et libre,
(2) L’application combinaison lineaire de 24,

CLy: K4 —V

est un 1somorphisme,
(3) Pour tout v € V il existe un unique uplet (x1,--- ,xq) € K% tel que v s’ecrit sous la forme

vV=2T1.€1 + "+ 24.€4.

THEOREME 5.5. Soit V un K-ev de dimension d alors V possede une base et toute base B de
V' wverifie

(5.3.3) |B| = dim(V).
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THEOREME 5.6 (Extraction et Completion). Soit V' un K-ev non nul de dimension d. On a

(1) Une famille generatrice 4 de cardinal d est une base.
(2) Une famille libre £ de cardinal d est une base.
(3) (Extraction) Soit ¢ C V une famille generatrice alors il existe une base % de V' contenue

dans 9 .
(4) (Completion) Soit £ C V une famille libre alors il existe une base % de V contenant £ .

THEOREME 5.7 (de la base incomplete). Etant donne £ une famille libre de V et 8 C V une
base, on peut extraire de B une sous-famille ' C B de sorte que L UL forme une base de V.
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THEOREME 5.8 (Bases et SEV). Soit V un espace vectoriel de dimension finie, et W C V un
sous-espace vectoriel alors W est de dimension finie et
(1) on a dim(W) < dim(V).
(2) Si dim(W) = dim(V') alors W = V.
(3) Si Bw est une base de W alors il existe une base By de V' contenant By .

— Un sous-espace vectoriel de dimension 1 est appelle droite vectorielle .
— Un sous-espace vectoriel de dimension 2 est appelle plan vectoriel.
— Un sous-espace vectoriel de dimension dim(V') — 1 est appelle hyperplan vectoriel.
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DEFINITION 5.19. Un K-ev qui ne possede pas de famille generatrice finie est dit de dimension
infinie.

e

DEFINITION 5.20. Soit V un K-e.v. Un sous-ensemble ¢ C V est une famille generatrice si

Vect(¥9) =V,
ie. tout element v € V' peut s’ecrire sous la forme d’une combinaison lineaire (finie) d’elements de
G: il eristed>1, e, - ,eq €Y, x1, -+ ,xq € K,, tels que
(5.4.1) vV=x1€1 + -+ T4€4.

DEFINITION 5.21. Soit V un K-e.v., un sous-ensemble & C V est une famille libre si tout
sous-ensemble fini £ C L est libre: si L' ={ey, - ,eq} (les elements tous distincts), on a

(5.4.2) ri1€e1+ -+ zx9eq =0y <= x1 =:--- =124 = 0.



THEOREME 5.9 (Existence de bases sous I'axiome du choix). Dans une theorie des ensembles
contenant ’axiome du choix, tout espace vectoriel sur un corps K possede une base et toutes les
bases de V' ont meme cardinal: pour toutes bases B, A’ il existe une bijection

B~ B
La dimension de V est de cardinal d’une base:

dim(V) = | 4|.
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PROPOSITION 6.1. Soit ¢ : V +— W wune application lineaire avec V de dimension finie. Soit

G ={e1, - ,e,} CV une famille generatrice alors ¢ est completement determinee par l’ensemble
de images des elements de G :

p(4) = {p(e1), - ,p(eg)} CW.
En particulier, () est une famille generatrice de Im(p) = (V') et on a

dim(Im ¢) < dim(V).
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DEFINITION 6.1. Soit ¢ : V — W wune application lineaire. Le rang de ¢ est la dimension de
Imp:
rg() = dim(Im ).

PROPOSITION 6.2 (Inegalite du rang) Soit V' de dimension finie. On a

d"‘\w = 12(¢) < min(dim V, dim W).
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THEOREME 6.1 (Noyau-Image). Soit ¢ : V — W une application lin ¢V de dimension

finte. On a
dim V' = dim(ker ) + dim(Im ¢).
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COROLLAIRE 6.1 (Critere de bijectivite). Soit p : V +— W une application lineaire entre espaces
de dimension finie. St
dim (V') = dim(W)
alors est conditions suivantes sont equivalentes
(1) ¢ est injective.
(2) ¢ est surjective
(3) @ est bijective.

Pawve () => (3) = () =>())
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DEFINITION 6.2. Une forme lineaire sur V est une application lineaire de V' a valeurs dans le
corps K (vu comme K-ev sur lui-meme)

.V — K.
On a la proposition suivante:

PROPOSITION 6.3. Soit ¢ une forme lineaire. St elle est non-nulle, i.e. ¢ # 0y, alors
Im(¢) = K, dim(kerl) = dim(V) — 1.

Proove . < 0+0y, ofow Im L K
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DEFINITION 6.3. Un sous-espace vectoriel de dimension dimV — 1 est appelle un hyperplan
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THEOREME 6.2 (Dimension de I’e p e des applications lineaires). Si V' et W sont de dimen
finies, alors Homg (V,W) e t d dimension finie

dn(H 1, (V, W) = dim V. dim W.
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“I push my fingers into my eyes,
It’s the only thing that slowly stops the ache ”



Fdlwuy) e\:%a,im 5 D uLa-—Dl' {.(:_




DEFINITION 6.4. Une application lineaire, { : V +— K, de V wvers le corps K est appelee ”forme
lineaire”. On note [’espace des formes lineaires par

V* := Homg ¢ (V, K)
et on l'appelle le dual de V.
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DEFINITION 6.5. Soit 8 = {ey,--- ,eq} une base de V', siv € V s’ecrit
v=21.€1+ -+ T4.€4,
pour i < d, le scalaire x; est la i-eme coordonnee de v dans la base 8. On note ce scalaire

x; = e; (v).

PROPOSITION 6.5. Pour i < d, ['application
v==x1.€1+ - +xie €V i—ej(v)=x,€K

est une forme lineaire . On appelle la i-ieme forme lineaire coordonnee relative a la base % de V.
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THEOREME 6.3. Soit A une base de V', la famille
{el ‘!e(l} -

est une base de V*. On a
Vi,j < d, ej(e;) = di=j = {
DEFINITION 6.6. La base

s’appelle la base duale de la base A.
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COROLLAIRE 6.2. Soit £ :V — K une forme lineaire. On a

d
L= le;)e].
1=1

Autrement dit, les coordonnees de { dans la base Z8* sont donnees par les (¢(e;))i<a (te. les valeurs
de { en chacun des e;, i < d).
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PROPOSITION 6.6 (Representation cartesienne d’un SEV). Soit W C V un SEV (distinct de
V). Il existe un entier d' > 1 et une famille de d' formes lineaires

[ = {51,“- ,gd,} cVv*

telles que
={w €V tels que £1(w) =0, Lo(w)=0,--+ Ly (w)=0}.

De maniere 6qui1)alent6, W = ker ¢, avec d A ) w
gOg:’U)GVH(El(U}),"',gd/( Kdl )m

En fait on peut prendre d' = dy — dw et la famille
L= {617 e vgdv—dn/} C V*

forment une famille libre de V* (ie. les {;, i < dy — dw sont lineairement independantes).
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LEMME 6.1. L’application &;; : V — W est lineaire, de rang 1, dtmage K .f; et de noyau
kCl’Eij = <@ — {ej}> =Ke + -+ K.ej_l + K.ej+1 + .-+ K.eq
I’hyperplan vectoriel engendre par les vecteur de la base 8 moins le vecteur e;.
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DEFINITION 6.7. Soit V,W des K-EV de dimensions finies d,d’ et
B = {el,--- ,ed} et 93, - {fl,-“ ,fdl}

des bases de V et W et B* ={ej,---,es} CV* la base duale de A.
Pour i < d', 7 <d les applications lineaires definies par

. * -
EijrveViej(v)fieW
sont appellees applications lineaires elementaires associees aux bases B et B'.

THEOREME 6.4 (Une base de 'espace des applications lineaires). La famille des applications
lineaires elementaires
By = {&,;, i <d, j<d} CHomg_.,(V,W)

forme une base de Hompg _¢,, (V, W).
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